منابع مشابه
Lagrangian and Hamiltonian Formalism on a Quantum Plane
We examine the problem of defining Lagrangian and Hamiltonian mechanics for a particle moving on a quantum plane Qq,p. For Lagrangian mechanics, we first define a tangent quantum plane TQq,p spanned by noncommuting particle coordinates and velocities. Using techniques similar to those of Wess and Zumino, we construct two different differential calculi on TQq,p. These two differential calculi ca...
متن کاملLagrangian and Hamiltonian Formalism for Constrained Variational Problems
We consider solutions of Lagrangian variational problems with linear constraints on the derivative. These solutions are given by curves γ in a differentiable manifold M that are everywhere tangent to a smooth distribution D on M ; such curves are called horizontal. We study the manifold structure of the set ΩP,Q(M,D) of horizontal curves that join two submanifolds P and Q of M . We consider an ...
متن کاملA nonlinear Hamiltonian formalism for singular Lagrangian theories
We introduce a “nonlinear” version of the Hamiltonian formalism which allows a self-consistent description of theories with degenerate Lagrangian. A generalization of the Legendre transform to the case when the Hessian is zero is done using the mixed (envelope/general) solutions of the multidimensional Clairaut equation. The corresponding system of equations of motion is equivalent to the Lagra...
متن کاملThe Lagrangian-Hamiltonian Formalism for Higher Order Field Theories
We generalize the lagrangian-hamiltonian formalism of Skinner and Rusk to higher order field theories on fiber bundles. As a byproduct we solve the long standing problem of defining, in a coordinate free manner, a hamiltonian formalism for higher order lagrangian field theories, which does only depend on the action functional and, therefore, unlike previously proposed formalisms, is free from a...
متن کاملSupplement on Lagrangian, Hamiltonian Mechanics
⋆ When there are several independent variables it is easy to make mistakes in taking partial derivatives. The fundamental rule is: always know which set of independent variables is in use, so that you are sure which are being held fixed during the process of taking a partial derivative. ⋆ A simple example will illustrate the problems that await the careless. Start with f(x, y) = 2x + y; ∂f/∂x =...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Progress of Theoretical Physics
سال: 1952
ISSN: 0033-068X
DOI: 10.1143/ptp.7.131